
556 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 2, FEBRUARY 2012

Adaptive Steganalysis of Least Significant Bit
Replacement in Grayscale Natural Images
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Abstract—This paper deals with the detection of hidden bits in
the Least Significant Bit (LSB) plane of a natural image. The mean
level and the covariance matrix of the image, considered as a quan-
tized Gaussian random matrix, are unknown. An adaptive statis-
tical test is designed such that its probability distribution is always
independent of the unknown image parameters, while ensuring a
high probability of hidden bits detection. This test is based on the
likelihood ratio test except that the unknown parameters are re-
placed by estimates based on a local linear regression model. It is
shown that this test maximizes the probability of detection as the
image size becomes arbitrarily large and the quantization step van-
ishes. This provides an asymptotic upper-bound for the detection
of hidden bits based on the LSB replacement mechanism. Numer-
ical results on real natural images show the relevance of the method
and the sharpness of the asymptotic expression for the probability
of detection.

Index Terms—Adaptive detection, information hiding, natural
image, nuisance parameters, statistical hypotheses testing.

I. INTRODUCTION

S ECRET bits embedding concerns the reliable transmission
of information embedded into host signals such as image,

video and audio. It has an increasingly wide array of applica-
tions, from digital watermarking, document authentication to
steganography [1]–[4]. Many tools are already available in the
public domain and others are easy to create [5]. Unfortunately,
all these applications can also be misused and, naturally, there
is an interest in knowing if such hiding can be reliably detected.
In addition, the huge amount of image available on the Internet
shows that there is a real need to use detection algorithms with
analytic statistical properties. It is especially crucial to warrant a
small prescribed false alarm probability and to know in advance
the probability to detect the hidden communication.

A. Information Hiding in Natural Images

The secret message is imbedded into a harmless natural image
which is called the cover, or host, image. The resulting image
is called the stego-image. Ideally the stego-image is indistin-
guishable from the original cover image, giving no indication
that other information has been encoded. The stego-image is
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then transmitted to the receiver via an unsecured channel. The
stego-image can be decoded by a receiver that knows the hiding
scheme and the specific parameters (the secret key), used by the
encoder, to retrieve the secret message.

An adversary can detect the hidden communication by ob-
serving the unsecured channel. The detection of hidden com-
munication is a difficult problem because, generally, it is an
ill-posed problem: the host image, the hiding rate (if data is
hidden), and the secret key are unknown. Despite the intrinsic
difficulty of the data hiding detection problem, its importance
has led to a number of attempts at developing useful tools; see
[2]–[4], [6], and [7] for a survey of the methods available in the
open literature.

The most studied algorithm is undoubtedly the simple yet
popular technique of hiding in the Least Significant Bit (LSB)
of the cover image [8], either in the pixel or transform domain,
or its variants. There can be no doubt that replacement of LSBs
in digital images is a poor choice for steganography [9] but it
remains popular in free steganography software. Moreover, this
is the mechanism which inspires the majority of existing hiding
methods. Broadly, the literature contains three main classes
of detectors for LSB replacement. The first, termed structural
detectors in [10], includes [10]–[15] among others; they ana-
lyze explicitly the combinatorial structure of LSB replacement
in pixel groups. The second, known as Weighted Stego-image
(WS) detectors, is found in [16] and [17], and involves filtering
the stego-image to estimate the cover. Last, the third class
contains statistical detectors [18], [19] which are derived by
applying statistical techniques to the inspected image.

B. Theoretical Limits of Standard Approaches

The vast majority of methods proposed in the literature have
generally unknown theoretical statistical performances, which
are evaluated by using numerical experiments from large image
databases. This involves three main drawbacks.

First, the performances of detection algorithms are generally
evaluated with Receiver Operating Characteristic (ROC) curves.
It is crucial to bear in mind that ROC curves are especially rele-
vant for testing two simple hypotheses [20]. In presence of com-
posite hypotheses (due to unknown cover images and unknown
hiding rate), a ROC curve is not sufficient to sum up the perfor-
mances of a detector. Strictly speaking, a ROC curve has to be
calculated for each possible cover image content, except when
it is theoretically established that the studied test is independent
from the image content. This is not the case for the approaches
existing in the literature.

Second, when analyzing a large number of images, it is ad-
visable to warrant a prescribed probability of false alarm (de-
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clare an alarm when inspecting a cover image). Designing a
detector whose probability of false alarm is theoretically con-
trolled for all possible cover images is not addressed by standard
approaches. This involves designing a test based on a decision
function independent of the cover image parameters. This is the
well-known concept of Constant False Alarm Rate (CFAR) de-
tection [21]. For a CFAR test, the detection threshold can be set
to warrant a prespecified false alarm probability. Such a detector
is also referred to as an adaptive detector [22], [23].

Finally, no optimal bound on detection performances has
been yet established in the literature, except the square root law
[24] which shows that the data-hiding capacity of covers grows
only with the square root of the available cover size. Hence
there are no theoretical means of evaluating a new challenger
test. The most common approach consists in comparing the
challenger test to the best tests known in the literature. This is
time consuming and not satisfactory from a theoretical point
of view. Moreover, although it is intuitively clear that such a
bound must depend on the hiding rate and the cover image
size (among other possible parameters), this dependence is not
clearly established, even in an idealized setting.

C. Main Contributions of the Paper

The goal of this paper is to design a statistical test which ad-
dresses the above mentioned drawbacks of standard approaches.
For this purpose, this paper considers an original approach to de-
tecting hidden bits in the LSB plane which consists in using a
parametric model of natural images together with the theory of
statistical hypotheses testing [25], [26]. The main contributions
of this paper are the following:

• The proposed approach is based on a parametric model of
natural images. Hence, it exploits the physical dependence
which naturally exists between the image pixels. These
pixels are not supposed to be identically distributed but
they admit a joint Gaussian distribution.

• An adaptive Asymptotically Uniformly Most Powerful
(AUMP) test is designed (under mild assumptions) to
decide if a natural image contains hidden bits. This test
maximizes the detection probability of hidden bits, inde-
pendently of the image parameters, whatever the hiding
rate. This test can meet a prescribed false alarm probability
whatever the image parameters.

• The detection threshold, the probabilities of false alarm and
detection of the adaptive AUMP test are analytically calcu-
lated as the size of the inspected image grows to infinity.
This provides an asymptotic upper-bound for the detection
of hidden bits based on LSB replacement.

To allow a simple mathematical formulation, only the LSB
replacement mechanism is studied in this paper. However, since
the proposed approach is based on general statistical concepts,
it can be extended to more general LSB embedding methods
provided that a probabilistic description of the data hiding
scheme is available. Compared to the previous published works
[27]–[31], this paper presents three main differences: i) it is
based on the fact that the quantization step vanishes as the
size of the inspected image grows to infinity; ii) it studies the
AUMP criterion of optimality; and iii) it explicitly considers

that the pixel variance is unknown. Finally, as a corollary of
this paper, it is shown that the WS detector [17] coincides with
the adaptive AUMP test provided that the tuning parameters of
the WS detector are conveniently chosen. Hence, the proposed
approach theoretically justifies a posteriori the performance of
the WS detector.

D. Organization of the Paper

The paper is organized as follows. Section II starts with the
problem statement. The problem of hidden bits detection is de-
scribed in the framework of statistical hypothesis testing theory
based on parametric models. Next, Section III proposes a sta-
tistical model for natural cover images. The statistical detec-
tion approach developed in the paper is based on this model,
especially when it is necessary to estimate the unknown cover
image parameters. Section IV presents the AUMP criterion of
optimality. It proposes a nonadaptive AUMP test which de-
tects hidden bits in natural images when the mean and variance
of the pixels are known, i.e., when the parameters of the nat-
ural cover model are known. This test provides an asymptotic
upper-bound for the detection probability of hidden bits based
on the LSB replacement mechanism. In Section V, it is proved
that the adaptive version of this test is also AUMP when the
mean and variance of the pixels are estimated, provided that
the quantization step vanishes and the image size becomes ar-
bitrarily large. In practice, the conditions of asymptotic conver-
gence are not totally satisfied and a theoretical formula, which
estimates the error in the asymptotic approximation, is also pro-
posed. Section VI studies the numerical performances of the
proposed detection algorithm on artificial and real natural im-
ages. Some comparisons with other detectors are also presented.
Finally, Section VII concludes this paper. The appendices give
the proofs of the two theorems presented in the paper.

E. Main Notations

Matrices are bold capital, vectors are bold lowercase and
scalars are not bold. The notation indicates the integer with
LSB flipped [16], i.e., where
is the LSB of . The main theoretical results of this paper are
based on the fact that the number of pixels is arbitrarily
large. Hence, many variables are indexed by to underline
their dependence to . For example, the quantization step
vanishes as . The notation , with , means
that tends to 1 as (the dependance of and with
respect to is implicitly assumed). The notation ,
with , means that tends to 0 as .

The notation means that the random variable is
distributed according to the probability distribution . Let

be a vector composed of two reals where denotes the
transpose of . The Gaussian probability density function (pdf)
is denoted and is given by

The standard Gaussian cumulative distribution function is de-
noted by and its inverse is .
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II. PROBLEM STATEMENT

This section describes the LSB replacement mechanism.
It also presents the statistical hypothesis testing problem for
hidden bits detection.

A. Information Hiding Model

This paper assumes that a cover image is a vector
of grayscale pixels with levels of

intensity, i.e., for all (see details in
Section III-C). The corresponding stego-image is created by
replacing the LSBs of proportion of the cover pixels. Let
be the probability distribution of the cover pixel , which is
denoted by

(1)

where is a vector parameter that characterizes the distribu-
tion of . Hence, the cover image depends on the vector

. The secret message (supposed to be encrypted) is
first converted in a sequence of bits, called the hidden bits. It is
assumed that each hidden bit, either 0 or 1, is equiprobable and
the bits are independent and identically distributed. It is also
assumed that each hidden bit is statistically independent of the
cover pixels. The secret message is inserted in the cover image
by using the well-known LSB replacement technique (at most
one bit per pixel is modified, the LSB one), whose statistical
model is given in [19]. Let be the random variable defined by

and

where is the hiding rate. If , no secret
bit is hidden in the pixel , otherwise the LSB of is replaced
with . The probability distribution of the random variable
after the LSB replacement is denoted

Calculation shows that

(2)

B. Hidden Bits Detection Problem

The inspected image is either a cover
image, i.e., for all , or a stego-one, i.e., if

and with otherwise.
Ideally, the goal is to test the two statistical hypotheses
no hidden bits in and presence of hidden bits in

formally defined by

(3)

where . When all the parameters are known, the
main difficulty in (3) is the fact that is unknown. Since there
are observed pixels and only one unknown parameter, this

problem is theoretically solvable. It must be noted that the an-
alytic calculation of the statistical performances of the optimal
solution, namely the likelihood ratio test [25], is still an open
problem.

Unfortunately, in practice, the parameters are unknown.
Let be the common size of all the vectors . Thus, there are
more unknown parameters, in total ( vectors and

), than the number of observed pixels. Hence, the approach
proposed in this paper consists in grouping pixels in small sub-
sets, say , of size such that the joint distribution of is sta-
tistically characterized by only few parameters, say
(see details in Section III). This reduction in the number of pa-
rameters is possible because of the redundancies which exist
between the pixels of the same group. Let be the unknown
parameter vector of size describing the th subset of pixels
and let be the vector composed of all image
parameters where is the number of subsets. The domain of
definition of is denoted . Then, it is proposed to solve the
alternative hypotheses testing problem between and de-
fined by

(4)

where , respectively, , is the joint distribution of in
absence, respectively, in presence, of hidden bits. The decision
problem (4) is not equivalent to the ideal one (3) except when all
the parameters are known. If not, they are almost equivalent
provided that is large and is rather small.

In order to solve (4), it is clear that knowing the distribution
of small cover pixel subsets, and especially its parameters ,
is crucial. The next section focuses on the definition of such a
statistical model for natural images.

III. STATISTICAL MODEL OF THE COVER IMAGE

This section deals with the statistical description of subsets
of natural cover image pixels, which is central to the design of
a statistical test for hidden bits detection. The main goal of this
section is to obtain a model with fewer unknown parameters
than the number of pixels in the inspected image.

A. Natural Raw Pixels Model

This paper deals with natural images, i.e., images which are
acquired by a digital imaging sensor. A fundamental model
of natural raw images is given in [32] for cameras equipped
with a charge-coupled device (CCD). The cover image pixel

, which corresponds to the grayscale level at position
of the cover image (considered as a matrix), is obtained by
quantizing the raw natural pixel intensity . The raw intensity

is the value (proportional to the number of photons collected)
recorded by the CCD matrix element at position . Let
be the pixel position set, which is typically described by the
enumeration of its elements with respect to the lexicographic
order: . Let be the noisy raw pixel intensity
at position given by [33]

(5)
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where is the mathematical expectation of the raw pixel
and is a zero-mean independent Gaussian random noise with
standard deviation , which is denoted by .
It is important to note that the raw pixels are statistically inde-
pendent [33], [34]. As discussed in [33], this model is a suit-
able approximation of noisy raw images produced by a digital
imaging sensor. The random variable follows a Gaussian dis-
tribution whose pdf is entirely characterized by the vector

.

B. Natural Raw Pixels Subset Model

Since is unknown for each pixel, there are more unknown
parameters than the number of pixels. Hence the model (5)
is not very useful in its present state. For this reason, it is as-
sumed that the image is locally stationary. Thus it is proposed
to partition the set into nonoverlapping subsets

of size . A raw pixel (and analogously ,
, and ) is also denoted to underline that it is the th

pixel of . The assumption of local stationarity involves that

(6)

where is a constant depending of the subset . The nota-
tion indicates that the number of subsets depends on the
total number of pixels. In the following treatment, it will be
assumed that as . In practice, each row is
viewed as a “smooth” one-dimensional signal and each subset
of pixels corresponds to a segment of contiguous pixels ex-
tracted from the same row. Obviously, according to the image
size and the chosen value of , some pixels can be discarded.
For simplicity, it is assumed that the row length is a multiple
of . To allow a simple mathematical formulation, this paper
is based on a segment decomposition of the image. But, gen-
erally speaking, many other subsets of pixels can be imagined
(3 3 pixel neighborhood for example). In this case, the main
difficulty is to have a good linear approximation of the mean
image level over these subsets of pixels. This difficulty is un-
derlined with the choice of the matrix in (8). The problem of
choosing the best linear approximation (and the corresponding
pixel neighborhood) is beyond the scope of this paper.

Even if the variance is constant per segment, there are
still too many unknown variables, in total, due
to the fact that the mean levels are still unknown. Let

be the th segment. The mean
level of is approximated by a linear model with a smaller
dimension than , which is based on redundancies which exist
between neighboring pixels. For example, suppose that all the
pixels in have the same mean intensity, say for all
, then the mean level of satisfies

...
...

More generally, this yields to the parametric model

(7)

where the matrix has the form

...
...

...
...

(8)

and is an unknown parameter vector. It is assumed
that and has full column rank, i.e., .
This means that the mean level of the segment is assumed to be
sufficiently smooth (following some arguments given in [35])
to be represented by a one-dimensional polynomial function of
order (see details in [36]). The choice of is a fundamental
dilemma for any parametric approach (see Remark 1). The poly-
nomial model can be replaced by other kinds of approximation
(see [34], [36] for example). The following results can be easily
extended to the more general case where the matrix depends
on the segment, i.e., . The simplified natural image
model for the th subset of pixels is finally given by

(9)

where for all and is the
identity matrix of order (see Remark 2). Let
be the parameter vector characterizing . The set of all pos-
sible parameters for a natural image with

blocks of pixels, see model (9), is denoted
where . Since the mean value and the vari-
ance of real images are always finite, it is assumed that

Assumption A1: The sets are all simultane-
ously bounded by a common constant.

This assumption is quite natural in practice. It is crucial to
ensure that the asymptotic distribution of the adaptive AUMP
test can be determined without undue difficulty.

Remark 1: The chosen parametric model may not fit real nat-
ural images perfectly. In practice, this mismatch yields to an
augmentation of the pixel variance. But, since the variance is
considered as an unknown nuisance parameter, the impact of
this augmentation is not significant as long as the approxima-
tion errors are not too severe.

Remark 2: Strictly speaking, the acquisition step is followed
by an image processing pipeline (e.g., de-mosaicing, gamma
correction, etc.) which modifies the statistical distribution of the
raw pixels [37]. This paper only considers natural images for
which this postprocessing is not highly nonlinear. Hence, it is
reasonable to assume that the linear model (9) is sufficient to
model locally a vast number of natural images.

C. Cover Pixels Subset Model

The subsets of cover image pixels are obtained by quantizing
the subsets of raw pixels. It is assumed that all the quantization
parameters, namely the number of quantization levels and
the quantization step , depend on the number of pixels. In
fact, forcing a LSB to change its value is equivalent to changing
the corresponding raw pixel value by adding, or subtracting, the
quantity . The proposed tests are based on an approxima-
tion of the discrete probability distribution of the cover pixels
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having errors up to . Hence, when inspecting a large number
of pixels, it is necessary to have a small quantization step to be
sure that the approximation errors of the true discrete probability
distribution are negligible with respect to the impact of hidden
bits insertion. Some details on this approximation can be found
in the proof of Theorem 1. Without any loss of generality, it is
assumed that (each grayscale level is coded with
bits).

A -level symmetric uniform scalar quantizer [38], [39] is
defined as follows (see Remark 3). Let be the quantiza-
tion index of given by

if
if

otherwise .
(10)

where denotes the integer smaller than or equal to . In other
words, the quantization rule is when
where , and . The
quantization value of is then given by

(11)

To sum up the notations, for a real value , the quantization
value is the real approximation of and the integer
is the quantization index, i.e., the grayscale level, which is
recorded in the image pixel in order to save computer memory
and file storage. In addition, it is assumed that

Assumption A2: When the quantization step tends to 0,
grows to infinity such that

(12)

This assumption is required to avoid the saturation of the quan-
tizer. For example, (12) is satisfied when is the integer part
of .

Let be the quantization index of the raw pixel

. To simplify the notations, is
an other notation for , see (11). It follows that

(13)

where denotes the probability of when
has the pdf and . Let be the quan-
tized index segment obtained by quantizing each component of

, i.e., or, equivalently, . The
cover image is given by . The flowchart de-
scribing the statistical model from the number of collected pho-
tons until the cover image pixels is summed up in Fig. 1. The
joint distribution of is denoted by ; this is the product of
distributions (see notations in [40])

(14)

Analogously, the joint distribution of after hidden bits inser-
tion is denoted

(15)

Fig. 1. Description of the statistical model from the number of collected pho-
tons until the cover image pixels. The size of each subset of pixels is���.

Remark 3: Strictly speaking, the mean pixel value is neces-
sarily positive but this constraint is not considered in the paper.
It is assumed that the value of , compared to , is large enough
to ensure that the positivity constraint is always satisfied when
the mean pixel value is estimated. Similarly, it would be pos-
sible to use a quantizer adapted to this positivity constraint. But,
as long as the assumption A2 is satisfied, the proposed results,
based on a symmetric quantizer, can be immediately extended
to other kinds of quantization.

IV. AUMP CRITERION AND UPPER-BOUND ON THE

DETECTION PROBABILITY

After a brief recall of statistical hypotheses testing theory, this
section introduces the AUMP criterion of optimality. Next, a
nonadaptive AUMP test is designed under the assumption that
the cover image parameters are known. This test provides an
asymptotic upper-bound on the detection probability of hidden
bits based on the LSB replacement mechanism.

A. AUMP Criterion of Optimality

Let be the inspected image obtained from a cover image
modeled in Section III; is either a cover image or a

stego-one (see details in Section II). The goal is to find a test
such that hypothesis is

accepted if . Some details on statistical hypotheses
testing theory are given in [25] and [26]. Let

be the class of tests with an upper-bounded false alarm proba-
bility , where stands for being generated by the joint
distribution .

The power function is defined by the probability of
hidden bits detection

where the probability stands for being generated by
the joint distribution .

The hypotheses testing problem (4) presents two main diffi-
culties : i) the two hypotheses and are composite and
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ii) there is an unknown nuisance parameter . Here is consid-
ered as a nuisance parameter because it is unknown and it does
not contain any information about the presence of hidden bits.
There is no general way to design a test between two composite
hypotheses, especially with nuisance parameters [25], [26]. A
possible approach consists in first eliminating the nuisance pa-
rameters. For this purpose, it is tempting to use the invariance
principle [25]. In other applications [22], [23], [41], [42], when
the pixels are assumed to have nonquantized real values, this
principle yields to good results. Here, the quantization operation
is not negligible for two main reasons: i) the number of levels

is rather small and ii) the hidden bits are directly inserted
in the quantization indices. Hence, it is necessary to take into
account explicitly the fact that the pixel values are quantized.
Since the quantization operation is nonlinear, it becomes very
difficult to use the invariance principle. An alternative solution
is to design an Uniformly Most Powerful (UMP) test which uni-
formly maximizes the power function with respect to and ,
i.e., the test whose power function satisfies

(16)

Unfortunately, this test rarely exists in practice [25], [26], es-
pecially in the presence of a nonlinear operation like the quan-
tization. For this reason, the remedy consists in designing an
asymptotically UMP test based on the assumption that the quan-
tization step vanishes as the number of pixels tends to infinity.
The definition of the AUMP test [26] is recalled hereafter.

Definition 1: Let . The test is AUMP in the
class , given by

to decide between and if the two following requirements
are satisfied:

i) ;
ii) for any

and , for all other test .
The AUMP test coincides asymptotically with an UMP test

as . The class is asymptotically equivalent to .
This asymptotic approach is reasonable since there is generally
a large number of inspected pixels and the quantization step is
often relatively small compared to their natural variability.

B. Upper-Bound on the Detection Probability

In this subsection, it is assumed that is known, which in-
volves hypotheses and being equivalent to hypotheses

and . Since is known, all the notations given in Defi-
nition 1 must be understood without the least upper bound over

. Let be the mean variance of the image defined by

(17)

Let be the test defined by

if
else .

(18)

where

(19)

The nonadaptive decision function is derived from the
calculation of the likelihood ratio test (see proof of Theorem 1).
It is based on residuals which indicate
the difference between the quantized value and its mean value

. The sign of this difference is adjusted by , which
takes value 1 and , to take into account the asymmetry in
LSB replacement (even pixels could only be incremented, and
odd pixels decremented, by overwriting the LSB). The scalar

is a weight so that the influence of pixels depends on their
noise level. Noisy areas are given less weight than those in flatter
areas. The following theorem shows that the test is AUMP
[26] as . To simplify the theoretical results, it is as-
sumed that

Assumption A3: The quantization step is chosen such that

(20)

This assumption is useful to avoid some theoretical difficulties
in the asymptotic study of the power function which yield to
noninteresting degenerate cases, i.e., the power function tends
to 0 or 1. It involves that as . For example,

and satisfy both assumptions A2 and A3.
Theorem 1: Assume A1, A2, and A3. Let

where . Then, as , the test is AUMP
in the class to decide between and . The false alarm
probability satisfies The
power function is asymptotically given by

(21)

Proof: The proof is given in Appendix A.
This theorem yields to some important observations. First,

the structure of the test clearly depends on the mean level of
the cover image and also on its variance. This test is quite sim-
ilar to the WS detector initially proposed by [16] and revisited
by [17]. The WS detector is known to have good performances.
Contrary to the approach followed by [16], [17], this paper de-
rives this test from the statistical theory of hypotheses testing.
Theorem 1 theoretically establishes both the structure of the test
and the form of the weights when the cover image parameters
are known.

Next, the power function (21) only depends on the hiding rate
and the “mean variance” (17), not on the mean level of the
image. This power function can serve as an upper-
bound for the probability of detection of any detector dedicated
to the problem of hidden bits detection based on LSB replace-
ment. Hence, , which can be viewed as an hiding-to-noise
ratio, is a good indicator of the test performances: the smaller
this ratio is, the more undetectable the hidden bits are. This is
also directly related to the square-root law of [24].

Finally, it must be noted that the power of the test tends to
if tends to 0. In fact, if the quantization step is very

small compared to the cover image variance, then a change in
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the LSB is not significant compared to the noise level. The se-
cret message becomes less detectable. This observation is also
true for other detectors. For example, the chi-square attack [18]
is based on the histogram of the image. When the quantization
step is small compared to the cover image variance, the sup-
port of the histogram is very large and the difference between
pairs of values, i.e., the values of couples with

, is very small. Hence, it becomes more
difficult for the detector to take its decision based on the differ-
ences between pairs of values.

V. ADAPTIVE AUMP TEST

This section considers a cover image whose parameter vector
is unknown. In this case, the true parameter is replaced in

Theorem 1 by its estimate , i.e., the adaptive version of the
test described in Theorem 1 is based on the estimates and
instead of and .

A. Estimation of Cover Image Parameters

Suppose that the quantization has negligible effects on the
estimation of the image parameters and . Then, these pa-
rameters can be estimated by using their well-known maximum
likelihood estimates for nonquantized observations (see details
in [43]). This yields to

(22)

Here, denotes the vector obtained by calculating the quanti-
zation value of each component of , is the Euclidean norm
of , and is the inverse of
the square matrix . The estimate of the mean variance is given
by

(23)

Then it follows from (22) that the estimates and of pixel
are given by

(24)

where it is supposed that is the th pixel of subset . The
difference between the denominators of and ,
instead of , is required to ensure that the adaptive decision
function, presented in (26), converges in distribution toward the
standard Gaussian distribution under . A flowchart summing
up the steps for the calculation of the adaptive test parameters

and , used in the decision function
(26), is given in Fig. 2. The adaptive version of residuals
is obtained by replacing by its estimate (see Remark 4).

Remark 4: The proposed adaptive AUMP test, see (25) and
(26), seems to coincide with the well-known Generalized Like-
lihood Ratio Test (GLRT) since the unknown cover parameters
are replaced by estimates. Strictly speaking, to prove that the
two tests are equivalent, it is necessary to derive the GLRT from
(4). This derivation is difficult because the pixels are quantized
random variables. Hence, the proposed approach is a shortcut

Fig. 2. Calculation of test adaptive test parameters �� and �� for a subset of
pixels with ���.

to avoid complicated calculations. Theorem 2 shows that using
this shortcut does not involve any loss of optimality (at least in
the asymptotic sense).

B. Asymptotically Optimal Adaptive Test

Let be the adaptive test defined by

if
else .

(25)

where

(26)

The following theorem shows that this adaptive test is AUMP in
the class provided that is conveniently chosen.

Theorem 2: Assume A1, A2, A3, and .
Then, as , the test to decide between and

is such that
provided that . Moreover, the test is
AUMP in the class to decide between and . Its power
function satisfies

(27)

for all and .
Proof: The proof is given in Appendix B.

The assumptions about the parameters , and are very
important. They ensure that the impact of the nuisance param-
eters and the nonlinearity of the quantization operation on the
test performances is asymptotically negligible as . It
is necessary to have a small number of nuisance parameters
per subset of pixels. Finally, compared with the decision func-
tion of the WS detector described in [16], [17], Theorem 2 gives
the estimates and the weights which ensure that the test
has both the CFAR property and the maximum detection prob-
ability. Theorem 2 is undoubtedly a theoretical justification of
the performances of the WS detector (see Remark 5).
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Results given in Theorem 2 are based on the convergence in
distribution of to the Gaussian distribution as .
In practice, the value of is not sufficiently small and the size
of is not sufficiently large to ensure that this convergence is
completely achieved, especially under hypothesis . In fact,
under , the quantization step and the difference
are directly involved in the mean of the asymptotic pdf of .
Hence, these parameters may have some impact of the detec-
tion performances of the test. The following corollary presents a
useful approximation of the mean of the decision function
under . Strictly speaking, the variance of should be
also corrected but, in practice, this correction is negligible with
respect to the correction of the expectation.

Corollary 1: Assume A1, A2, A3, and .
Under hypothesis , the decision function satisfies

(28)

where denotes the expectation when for all
.

Proof: From (41), (57), and (78), it follows that

which yields to (28) and ends the proof.
Due to this corollary, the optimal asymptotic power function

given in (27) can be approximated by the corrected
power function

(29)

From (28), it is obvious that . Hence, when is not
sufficiently large to ensure that , there is a small loss of
optimality. In practice, the size of must not be too large; the
local approximation of a nonstationary cover image is generally
only acceptable for a small . This loss of optimality reflects
the difficulty to approximate a cover image with a parsimonious
linear model, i.e., with a regression model characterized by a
small number of parameters.

Remark 5: The algorithm WS [16] has been introduced as an
estimate of ; the detection step consists of comparing to
a threshold. In this paper, the decision function can be
viewed as an estimate of since its expected value is 0 when

and when . However, in practice, the param-
eter is unknown since its depend on . Hence the estimate

has necessarily a bias when . For the detection
purpose, this bias has no matter since the test is almost optimal.
For the estimation purpose (which is clearly out of the scope
of this paper), this bias must be corrected. Hence, for the WS
algorithm, a bias correction is required [17] and a special atten-
tion must be devoted to the mean level estimate (the estimate
must be independent on the pixel of interest to avoid a bias aug-
mentation). These two requirements are not necessary for the
proposed test.

VI. NUMERICAL EXPERIMENTS

This section shows the relevance of the model (9), the per-
formances of the test given in Theorem 2 and the quality

Fig. 3. Power curves in logarithmic scale for 3 hiding rates� � ����,� � ���

and � � �: empirical curve (full line with circles), corrected asymptotic one
(full line with squares) and asymptotic one (dotted line).

of the asymptotic approximation (29). First, the theoretical re-
sults are illustrated by using simulated data. Next, the adaptive
AUMP test is applied to real images and it is compared with
several other detection algorithms, namely the Generalized Cat-
egory Attack (GCA), the Sample Pairs Analysis-Least Square
Method (SPA-LSM) method and the WS detector.

A. Simulated Data

This subsection deals with an artificial image which fol-
lows the simplified natural image model (9) with ,

and for all .
The cover segments are quantized with levels.
The matrix is given by (8).

To evaluate the quality of the asymptotic approximation,
Fig. 3 shows the power function associated to as a
function of the number of pixels for . The quan-
tization step is , and the hiding rate is

. The integer increases as the number
of pixels increases. The number of samples used to estimate

each point of the empirical curve is sufficiently high to ensure
that the 95%-confidence interval (which is not plotted to ensure
legibility of the figure) almost coincides with the estimated
curve. The empirical power function is closely
approximated by the corrected theoretical power function

given in (29). Moreover, this figure shows the gap
between and given in (27): this loss of

optimality is due to the fact that , i.e.,
.

Finally, Fig. 4 shows the impact of the couple on
the asymptotic performance of the AUMP test . The
number of inspected pixels is either or . The
parameter is either or . The quantized step
is and the pixel variance is for
all . The hiding rate is and . The asymp-
totic power of the test is where is given in
(20). The corrected asymptotic power is where

, , , and
varies between 0 and . Clearly, the asymptotic detection
probabilities and do not depend on

and . The corrected asymptotic detection probabilities
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Fig. 4. Power curves in logarithmic scale, for four different values �� �� �,
�� �� �, �� �� �, and �� �� � of the couple �����, as a function of �.

are some decreasing functions of . When is small, i.e.,
, the loss of power due to the choice of a large is

greater when is small. On the contrary, when is large, i.e.,
, it is possible to choose a large value of without

any significant loss of optimality, especially if is large. In
practice, the value of is mainly limited by the choice of .
As explained in the rest of this section, a large value of is
generally not reasonable for real images.

B. Comparison With Other Algorithms on the BOSS Base

The results in this subsection are drawn from the BOSS base
of real cover images [44]. This set consists of 9074 grayscale
cover images of size 512 512 in the portable graymap format
with and (the true value of is un-
known). When secret bits are hidden in images, the hiding rate
is . This subsection compares the proposed adaptive
AUMP test with several other detection methods. First, the GCA
method [15] is included in the comparison because it is the gen-
eralization of the Chi-Square attack [18]. Several versions of
the GCA method, named combined relativities, are proposed in
[15]. For the BOSS base, the best performance was obtained for
the combined relativities (2). Hence, the proposed AUMP
test is compared with the CGA-CR (2) method. The structural
detector SPA-LSM method [45] is also studied. It is simple and
efficient (more powerful than the RS scheme [46]). Finally, the
revisited version of the WS detector is used as a natural com-
petitor for the adaptive AUMP test. The parameters proposed in
[17] are used to tune the WS detector, i.e., the WS detector is
based on a filtering window of size 3 3 with moderate weights
[17, eqs. 5 and 9].

The parameters of the AUMP test are and
(hence ). The choice of is made to get good per-
formances (several values have been tested). When is large
( , for example), the polynomial approximation may be
inaccurate (even with a high order ). Hence, it is preferable
to use a small value of ( is recommended in prac-
tice). In such a situation, the estimation of mean and variance is
certainly not very accurate but it is generally sufficient to detect
hidden bits. The decision function given in (26) is then
computed. To avoid numerical instabilities, each segment with
a very small variance, i.e., a segment which satisfies the em-
pirical rule , is scaled to obtain the minimum variance

Fig. 5. Comparison between the SPA-LSM, CGA-CR (2), WS and AUMP
algorithms for the BOSS base.

value 1. This empirical rule can be viewed as a kind of regular-
ization. A pixel with a very small variance estimate may have
a serious impact on the decision function. Hence, it is neces-
sary to limit this impact by increasing artificially the estimated
variance of this pixel. This astuteness is very similar to the one
used for choosing the weighting coefficients in the WS algo-
rithm (see details in [17]): the estimated variance in flat regions
must be corrected to stabilize the behavior of the WS algorithm.
Fig. 5 shows the detection rate plotted as a function of the false
alarm rate for all the analyzed methods. To obtain these curves,
the decision function of each method is compared to a threshold
which varies continuously. According to Theorem 2, the power
function of the AUMP test is independent of the image parame-
ters. For this reason, when the hiding rate is fixed, the power
of the test is just a function of the false alarm probability and,
consequently, the ROC curve for the proposed AUMP test is
properly defined, as shown in (27) and (29). From Fig. 5, it is
clear that the proposed adaptive AUMP test outperforms all the
other tests, whatever the false alarm rate.

VII. CONCLUSION

This paper proposes an original approach to detect hidden bits
in grayscale natural images. The proposed approach is based
on a simplified parametric model of natural images and it ex-
ploits the image structure. When the parameters of the model are
known, Theorem 1 proposes a nonadaptive AUMP test which
maximizes the probability of detection, whatever the hiding rate,
when the quantization step vanishes as the number of pixels be-
comes arbitrarily large. Hence, it provides an asymptotic upper-
bound for the detection of hidden bits based on the LSB replace-
ment mechanism. In real situations, the image parameters are es-
timated and Theorem 2 proposes an adaptive AUMP test which
maximizes the probability of detection whatever the hiding rate
and the true image parameters. Numerical experiments on real
images and comparisons with existing detection algorithms con-
firm the statistical performances of the test.

APPENDIX A
PROOF OF THEOREM 1

The proof is broken down into four steps. First, the decision
function, denoted , of the Likelihood Ratio Test (LRT)
is calculated when the hiding rate is known. It is expressed
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as a function of the decision function of the AUMP test.
Second, the statistical distribution of under is estab-
lished. Third, the statistical distribution of under is
established when the hiding rate is known. Finally, based on
the results obtained from the previous steps, it is proved that the
LRT is statistically equivalent to the AUMP test, which estab-
lishes the optimality of the AUMP test.

For a sequence of numbers and , the notation
means that is bounded as . For

random variables and , the notation
means that in probability, which is also denoted

. The convergence in distribution (or in law) is

denoted by . Strictly speaking, in the following proof, some
of the notations , and should depend on the
inspected pixel , i.e., these notations should be replaced by

, , and . But, according to assumption A1 and
since all the function , , and have the same
limiting behavior for all , the index is omitted to simplify the
notations.

A. Asymptotic Likelihood Ratio Test

Suppose that is fixed. The optimal test solving
the decision problem between the two simple hypotheses

(30)

is given by the Neyman-Pearson lemma [25]; this is the well-
known LRT defined by

if
else

(31)

where

(32)

Here, is a threshold such that .
A direct calculation shows that

(33)

(34)

where is an infinitely differentiable function with respect
to . In fact, for , (33) and (34) are ob-
tained by using (13) and the Taylor series expansion of

around for (33) and around
for (34). For and , (33) and (34) are obtained

by using an asymptotic approximation of the Gaussian distribu-
tion tail (provided that (12) is satisfied). It follows from (33) and
(34) that

(35)

where . The fact that the sets are simultane-
ously bounded is necessary to derive (35), especially the term

. From (32) and (35), one obtains

Whichever is the true hypothesis, or , it is clear that
(see (37)–(40) for technical details)

Hence, the second-order Taylor series expansion of
around yields to

Equation (31) and (32) show that the test is related to
the test via the equality

(36)

where is given in (26).

B. Asymptotic False Alarm Probability for

For brevity, let such that

. Under hypothesis , . Based on
(33) and the definitions of the mathematical expectation and the
variance, a direct calculation yields to

(37)

(38)

where , and denotes, respectively, the ex-
pectation, the conditional expectation and the variance when

.
Hence, from the Lindeberg central limit theorem [25, The-

orem 11.2.5] and the definition of (17), it follows that
as . It must be noted that the

Lindeberg condition is easily satisfied for the random variables
. Hence, the threshold asymptoti-

cally warrants the false alarm probability .
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C. Asymptotic Correct Detection Probability for

Similarly, under hypothesis , . Based on
(2) and (33), one obtains

(39)

(40)

Hence, from the Lindeberg central limit theorem, it follows that
. The asymptotic power of the test is then

D. Asymptotic AUMP Optimality

According to (20), it follows that . Hence,
using (36) and the asymptotic convergence results of the two
previous subsections, the Slutsky’s Theorem [25, Theorem
11.2.11] shows that the test is asymptotically equiva-
lent to the test .

Neither the decision function nor the threshold de-
pend on . Hence, the test is equivalent to the Neyman-
Pearson test whatever the value of , which
ends the proof.

APPENDIX B
PROOF OF THEOREM 2

For brevity, let , ,
and such that (26) is

rewritten as

(41)

Let be the projection matrix onto the
linear space spanned by the matrix whose elements are de-
noted for .

The main difficulty in the proof is due to the quantization of
the ’s. This nonlinear operation generates some correlations
between and , which makes difficult the study of . More-
over, the asymptotic behavior of needs a special attention
because the quantization also has an impact on it. Hence, the
proof is broken down into four steps: 1) the asymptotic study of

under and 2) under , 3) the calculation of the proba-
bility distribution of under and 4) under . Based
on these four results, the asymptotic probability of detection of

is calculated, which proves its asymptotic optimality. Al-
though the notations , , and may depend on the
inspected pixel or the inspected segment , this dependence
is not mentioned in the proof to simplicity the notations (see the
discussion at the beginning of Appendix A).

A. Asymptotic Study of Under Hypothesis

By definition, can be rewritten as

(42)

Let be the Gaussian “raw” vector such that .
The variance estimate based on the nonquantized vector is
given by

(43)

It is well known that follows a central chi-square
law with degrees of freedom [41]. From (42) and
(43), it follows that:

(44)

where . The following formula is obtained
by using the well-known results about the expectation of a
quadratic form [47] and the results about quantization [48]

(45)

where is the trace of .
Expanding and using the results of [48] about the

quantization of Gaussian variables together with the Cauchy-
Schwarz inequality [43] gives that

(46)

Moreover, the Cauchy-Schwarz inequality also yields to

(47)

From [49], for large value of , it is known that

(48)

since follows a central chi-square law [41]. Thus, for
sufficiently large, using (44), (45), and (46), it is clear that

(49)
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From (47), (48), and (49), it follows that:

(50)

Hence, (42) and (43) yields to

(51)

Using the triangle inequality and the fact that , one
obtains

(52)

Hence, since convergence in mean implies convergence in prob-
ability, (52) yields to

(53)

Using (43) and (46), for , it is clear that

It follows that:

(54)

(55)

Since is bounded for all , the random

variables are clearly uniformly integrable [40] and

. Hence, the moments of

converge toward the moments of . According to

(53), the expectation and variance of can be, respectively,

approximated by (54) and (55). Thus, as , one obtains

(56)

It follows that . When is not sufficiently large to
ensure that , (54) yields to the following alternative
formula:

(57)

B. Asymptotic Study of Under Hypothesis

Under hypothesis , the estimates are obviously contam-
inated by the hidden bits. Fortunately, from (76) and (77), it is
clear that the impact of the hidden bits on the variance estimate
is negligible; this impact is entirely included in a residual term

. Hence, it is straightforward to prove that .
In fact, the proof is similar to the one derived under hypothesis

provided that , used in the definition of , corresponds to
the “raw” vector before the insertion of hidden bits. The results
(45) and (46) remain unchanged under . The convergences
(56) and (57) are still satisfied.

C. Asymptotic False Alarm Probability

Under hypothesis , . A direct calculation imme-
diately shows that

(58)

(59)

where , respectively, , denotes the expectation,
respectively, the variance, when . It follows that:

(60)

(61)

where .
In order to use again the Lindeberg central limit theorem, it is

necessary to calculate the expectation and variance of . This is
the ratio of two (possibly dependents) random variables. Using
the fact that , the definitions of and yield
to

(62)

(63)

where denotes the element of at position . A short
calculation shows that

for where denotes the covariance when
. Let , and

where has the length .
Using again the results about the expectation and variance of a
quadratic form [47], one obtains
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It follows that:

(64)

In addition, a direct calculation shows that

(65)

(66)

Hence, as , and the well-known Delta
method [40], [50] yield to

(67)

(68)

The Delta method [40], [50] yields also to the well-known
formula

Using (61), (64), and (65), it follows that:

(69)

(70)

Hence, from (41), (68), (70), and the Lindeberg
central limit theorem, one obtains

From (56) and the Slutsky’s Theorem [25, Theorem 11.2.11],
it follows that . To warrant the false alarm
probability , the threshold must be chosen such that

.

D. Asymptotic Correct Detection Probability

Under hypothesis , . A direct calculation
shows that

(71)

(72)

where , respectively, , denotes the expecta-
tion, respectively, the variance, when . It follows that:

(73)

(74)

For , a direct calculation shows that

where denotes
the covariance when . Using again the results about
the expectation and variance of a quadratic form [47], one ob-
tains It
follows that:

(75)

In addition, it is easily shown that

(76)

(77)

Hence, using (67) adapted to hypothesis ( and
are replaced by and ), the

Delta method yields to

(78)

Using (75), (76), (77), and (69) adapted to hypothesis , one
obtains

(79)

Hence, from the Lindeberg central limit theorem and the fact
that , it follows that

. From (56) and the Slutsky’s Theorem, one obtains

. This yields to

, , . Using Theorem

1, the test is AUMP since i) the structure of
given in (41) does not depend on and and ii)

, , .
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